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AN INVESTIGATION OF TRE DYNAMIC STABILITY AND 

CONTROL CHARACTERISTICS FOR A TRANSPORT 

CRUISING AT A MACH NUMBER OF 3 

By Lawrence W. Brown 
Langley Research Center 

A theore t ica l  investigation has been made of t he  charac te r i s t ic  modes of 
t h e  dynamic l a t e r a l  s t a b i l i t y  of a supersonic-transport configuration, cruising 
a t  a Mach number of 3 a t  a l t i t udes  of 60,000 f e e t  and 7O,OOO f e e t  with t r i m  
angles of attack of 3 . 6 O  and 5 . 8 O ,  respectively. 
qua l i t i es  were studied by using the  c lass ica l  l inear ized equations of lateral  
motion, t he  r a t i o  of the  roll angle t o  the  equivalent side velocity, and the  
r a t i o  of t he  r o l l  angle t o  s idesl ip .  The e f fec ts  of t h e  cross-control deriva- 
t i v e s  on the  s t a b i l i t y  of t he  configuration w i t h  damper augmentation were inves- 
t igated.  I n  addition, t he  roll coupling of t he  unaugmented configuration w a s  
considered. 

The s t a b i l i t y  and f lying 

Results show t h a t  the  interact ion of the r o l l  and yaw dampers and the  
change i n  s t a b i l i t y  with a l t i t ude  require a system with variable damper gains 
t o  obtain sat isfactory lateral s t ab i l i t y .  I n  addition, too s m a l l  a value of 
t he  s t a t i c  direct ional  derivative may cause large rol l - to-s idesl ip  r a t io s  and 
roll-coupling problems. 

INTRODUCTION 

An investigation of possible configurations f o r  t he  supersonic commercial 
transport  has been i n  progress a t  t he  National Aeronautics and Space 
Administration. This a i r c r a f t  w i l l  extend commercial f l i g h t s  t o  Mach numbers 
of 3 and t o  a l t i tudes  as high as 70,000 f ee t .  Considerable a t ten t ion  has been 
given t o  many different  design concepts t o  develop a superior cruise vehicle. 
Since no generally accepted f lying-qual i t ies  requirements ex is t  f o r  t he  lateral 
modes of transport  type of a i r c ra f t ,  the  s t a b i l i t y  character is t ics  presented 
herein are  compared with exis t ing mi l i ta ry  specifications f o r  l a t e r a l  direc- 
t i o n a l  s t ab i l i t y .  Preliminary estimates of t h e  handling qua l i t i es  determined 
from simulator studies reported i n  reference 1 indicate t h e  necessity f o r  fur- 
t h e r  investigation of  the  configurations considered. 



A theore t ica l  investigation w a s  undertaken of t he  lateral s t a b i l i t y  char- 
a c t e r i s t i c s  of a supersonic-transport configuration incorporating variable- 
sweep wings f o r  which the  sweep var ies  with speed and a l t i t u d e  u n t i l  it reaches 
75' f o r  a cruising speed of a Mach number of 3 .  
culations of t he  dynamic l a t e r a l - s t a b i l i t y  charac te r i s t ics  f o r  a l t i t udes  of 
60,000 f e e t  and 7O,OOO f e e t  and a gross weight of 375,000 pounds f o r  t he  con- 
f igura t ion  with 7'3O sweepback at a Mach number of 3 .  Various yaw-  and ro l l -  
damper combinations a re  considered. I n  these cases, t he  e f f ec t s  of omitting 
o r  including the  cross-control derivatives were studied. 

This analysis contains cal- 

The r e su l t s  a re  presented as p lo t s  of t h e  reciprocal of t h e  t i m e  t o  damp 
t o  half-amplitude of the  lateral modes with increasing damper gains and angle 
of attack. 
presented as a function of t he  r a t i o  of r o l l  angle t o  equivalent side velocity 
and i s  compared with the  f lying-qual i t ies  c r i t e r i a .  
f o r  i n e r t i a l  coupling of the  undamped a i r c r a f t  i s  a l s o  presented. 

The Dutch r o l l  damping of t he  a i r c r a f t  augmented with dampers i s  

The c r i t i c a l  r o l l  velocity 

wing span, f t  

wing mean aerodynamic chord, f t  

L i f t  lift coefficient,  - 
qs 

rolling-moment coefficient,  
Rolling moment 

SSb 

Pitching moment 
qSF 

pitching-moment coefficient,  

dCm s t a t i c  margin, - 
dCL 

Yawing moment 
Ssb 

yawing-moment coefficient,  

Side force 
qs 

side-force coefficient,  

cycles t o  damp t o  half-amplitude 

acceleration due t o  gravity, 32.2 f t / sec2  

al t i tude,  f t  

1x9 Iy, I, moment of i n e r t i a  about the  pr incipal  body axes, (slugs)(sq f t )  
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kl 

k2 

r 

S 

t l / 2  

t 2  

v 

V 

Ve 

cg X 

U 

P 

&a 

6 r  

roll-damper gain, €ja/$ 

yaw-damper gain, 6r/$ 

Mach number 

m a s s ,  slugs 

ro l l ing  angular velocity 

period 

dynamic pressure, 

yawing velocity 

wing area, sq f t  

time t o  damp t o  half-amplitude, sec 

PV2 - , Ib/sq ft 

time t o  double amplitude, sec 

velocity, f t / sec  

side velocity, - Pv f t / s ec  
57.3’ 

equivalent s ide velocity, vfi, f t / s ec  

center-of-gravity posit ion measured from wing pivot point, a f t  direc 
t i on  being posit ive,  f t  

angle of attack, degrees, except i n  appendix where u i s  i n  radians 

angle of s idesl ip ,  radians 

ai leron deflection, radians 

rudder deflection, radians 

air  density, slugs/cu f t  

a i r  density r a t i o  

angle of roll, radians 

angle of yaw, radians 
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nondimensional %I2 

v2 nondimensional 

Ma MqLu 2 (- Iy - pitch parameter, 

yaw parameter, 

ratio of roll angle to sideslip angle If1 
ratio of roll angle to yaw angle 1: I 

-2v 



Subscripts: 

dyn dynamic 

0 value at  angle of a t tack of zero 

U denotes p a r t i a l  derivative with respect t o  angle of attack 
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ANALYSIS 

Aircraf t  Fl ight  Conditions and Characterist ics 

The lateral s t a b i l i t y  of t he  susersonic-transport configuration shown i n  
f igure  1 w a s  investigated.  The a i r c r a f t  motion was represented with reference 
t o  the pr incipal  body axis by the  l inear ized equations of l a t e r a l  motion, as 
presented i n  reference 2. 
The flight conditions represented were f o r  trimmed l e v e l  f l i g h t  at a Mach num- 
ber  of 3 at a l t i t udes  of 60,000 f e e t  and 70,000 feet. The t r i m  angle of a t tack 
a t  60,000 feet w a s  3.60 and t h a t  f o r  70,000 f e e t  w a s  5.8O with wing sweep angle 
of 750. 
of the  r o l l  angle t o  equivalent side velocity 

angle t o  s ides l ip  If1 of the  osc i l l a t ing  mode and the  damping of the  aperiodic 

modes. The aircraft-configuration charac te r i s t ics  and t h e  conditions assumed 
f o r  t he  f l i g h t  evaluations a r e  presented i n  t ab le  I. 

The gross weight w a s  assumed t o  be 375,000 pounds. 

Calculations were made t o  determine the  period and damping, the r a t i o  

- , and the  r a t i o  of t he  roll 
F e  I 

For t h i s  variable-sweep configuration t h e  wing-pivot s t a t ion  w a s  considered 

For t h i s  center-of- 
a feas ib le  center-of-gravity location, and pitching and yawing moments w e r e  
referenced t o  t h e  longitudinal location of t h e  pivot point. 
gravi ty  posi t ion the  a i r c r a f t  has a posi t ive s t a t i c  margin ( C q L  = -0.233). 

The s t a b i l i t y  der ivat ives  were estimated from values computed according t o  the  
method of reference 3 and from wind-tunnel data of similar configurations. 
contribution of an angle of a t tack t o  t h e  s t a b i l i t y  derivatives 

and C is  based on wind-tunnel t e s t  results, and the  values are given i n  the  

appendix. A plot  of -Czp and Cn is  presented i n  figure 2. 

The 
Czp, Cnp, 

nP 

P 

Flying Qualities 

The problem of establishing f lying-qual i t ies  requirements f o r  the super- 
sonic transport  i s  being considered, but as yet  no generally accepted require- 
ments have been established. 
la te ra l -d i rec t iona l  charac te r i s t ics  a re  accepted as those established f o r  
mi l i ta ry  a i r c ra f t ,  inasmuch as t h e  present configurations should meet many of 
t he  requirements f o r  t h e  mi l i ta ry  a i r c r a f t .  

For the  purpose of t h i s  analysis the  sa t i s fac tory  

The Dutch r o l l  mode is  considered 

sa t i s fac tory  f o r  - > 0.24 with a r t i f i c i a l  dampers inoperative and f o r  
c1/2 

- I > 0.7 with a r t i f i c i a l  dampers operating, as presented i n  reference 4 which 
c1/2 
includes the  requirements of /&I. I n  addition, the c r i t e r ion  from reference 5 

~ 

is  imposed f o r  t h e  rol l - to-s idesl ip  r a t i o  < 4. Reference 5 s t ipu la tes  a 
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sa t i s fac tory  c r i t e r ion  f o r  the  roll-to-yaw r a t i o  (If i < 4). i n  which r o l l  and 

yaw motions are  defined i n  the  s t a b i l i t y  axis  system. This c r i t e r ion  i n  some 

investigations has been applied t o  r o l l  and s ides l ip  motions, since 

i n  the  s t a b i l i t y  axis system. The parameter 18 I is  essent ia l ly  independent 

of the  axis  system, and i n  t h i s  investigation (based on body axis  equations of 
motion) the  roll-to-yaw r a t i o  c r i t e r ion  of reference 5 could be applied d i r ec t ly  
as  a 1 f I cr i te r ion .  The c r i t e r ion  f o r  t h e  damping of the  r o l l  mode w a s  

lfl= It1 
< 

1 selected from p i l o t s '  opinions as -> 1, and the  crite,-ion f o r  t he  s p i r a l  
t l / 2  

mode w a s  taken from reference 4 as 
t 2  

reference values i n  t h i s  investigation, but fur ther  research t o  determine 
acceptable c r i t e r i a  i s  required f o r  configurations of t h i s  type. 

1 < 0.05. These c r i t e r i a  are used f.or 

S t a b i l i t y  Augment at i on 

For the  purpose of t h i s  analysis, the  a i r c r a f t  s t a b i l i t y  w a s  considered t o  
be augmented by the  inclusion of auxi l iary dampers, which provided control- 
surface def lect ion proportional t o  ro l l i ng  and yawing ve loc i t ies .  
c r a f t  i s  augmented with auxi l iary dampers, t he  cross-control effectiveness may 
have a destabi l iz ing e f f ec t  and should be considered i n  the  analysis.  Dampers 
were added t o  the  basic  configuration and were included as increments of damping 
i n  Cz and Cn,, and t h e  cross-control moments w e r e  added as  increments i n  

When the  air- 

P 
C% and C z r  by the  use of t h e  Pollowing equations: 

where k l  and kg a re  the  roll- and yaw-damper gains Sa/$ and Sr/$, 
respectively. 
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REULTS AND DISCUSSION 

Unaugmented Configuration 

Since some of the  aerodynamic parameters vary appreciably w i t h  angle of 

mine the  e f f ec t s  of angle of a t tack on the  l a t e r a l  modes. Calculations were 
made f o r  angle of a t tack varying from Oo t o  loo, and account was taken of t he  
var ia t ion  i n  the  s t a t i c  derivatives Czp and CnP and the rotary derivative 

period of the  Dutch r o l l  mode with angle of attack f o r  a l t i t udes  of 60,000 feet 
and 70,000 f e e t .  
decreases rapidly as a increases. Calculations show that a t  approximately 
a = 8' The 
period and damping of the  Dutch r o l l  mode increases gradually; t h i s  increase i s  
a t t r ibu ted  t o  a t r ans fe r  of damping from the  r o l l  mode t o  the  Dutch r o l l  mode 
with an increase i n  a. 

attack, as indicated i n  f igure  2, the  basic configuration w a s  analyzed t o  deter-  9 

. Figure 3 shows t h e  var ia t ion i n  the  damping of the l a t e r a l  modes and the 
cnP 

A t  an a l t i t ude  of 60,000 feet, the  damping of the  r o l l  mode 

the  r o l l  and s p i r a l  modes merge in to  a long-period osci l la t ion.  

With an increase i n  the a l t i t ude  t o  70,000 f e e t  the  air density decreases 
The period of t he  Dutch r o l l  mode and causes a decrease i n  the  t o t a l  damping. 

increases. The rate of change of damping of each mode w i t h  a maintains about 
t he  same trend as a t  60,000 fee t .  The foregoing analysis indicates  that, t o  
fu l f i l l  the  damping requirements and t o  es tabl ish sa t i s fac tory  s t ab i l i t y ,  augmen- 
t a t i o n  of t he  basic  configuration i s  necessary throughout the angle-of-attack 
range. 

Effects of R o l l  and Yaw Dampers Without Cross-Control Moments 
m 

Effects of r o l l  damper.- Figure 4(a)  shows the  var ia t ion i n  the  damping of 
the  l a t e r a l  modes with an auxiliary r o l l  damper k l  with ensa = 0. For an 

a l t i t ude  of 60,000 f e e t  and a t r i m  angle of a t tack of 3.6', t he  damping of t he  
r o l l  mode increases w i t h  kl and a t t a ins  a sa t i s fac tory  value f o r  kl 2 0.52, 

as shown by the  sa t i s fac tory  roll-mode boundary. 
mode increases with because of the  t r ans fe r  of damping from the r o l l  mode 
t o  the  Dutch r o l l  mode, as indicated previously, and becomes sa t i s fac tory  f o r  
k l  1. 0.20, as  shown by the  sat isfactory Dutch r o l l  mode boundary. The damping 
of the s p i r a l  mode decreases as k l  increases but remains s tab le  throughout 
t he  k l  range. 

"he damping of t he  Dutch r o l l  
k l  

When the  a l t i t ude  i s  increased t o  70,000 feet ( f i g .  &(a)),  the diminution 
of the  air  density causes the  t o t a l  damping of t he  system t o  diminish, and an 
increase i n  the angle of attack f o r  t r i m  (a = 5.80) causes the  r o l l  damper t o  
a c t  as a p a r t i a l  yaw damper. A s  k l  increases, t he  damping of t he  r o l l  mode 

increases gradually but i s  not suff ic ient  t o  s a t i s f y  the  flying-quality c r i t e -  
r ion.  a, the  damping of the  Dutch r o l l  mode has 
almost the  same r a t e  of increase as the  damping of the  r o l l  mode and becomes 

As  a result of an increase i n  
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sa t i s fac tory  f o r  k l h  0.19. The damping of t he  s p i r a l  mode diminishes as k l  
increases but remains sat isfactory throughout t he  k l  range. 

Effect of yaw damper.- The variation i n  the  damping of t he  lateral  modes 

d t h a t  due t o  an auxi l iary r o l l  damper. (See f i g .  4 (b) . )  A t  an a l t i tude  of 

with an auxiliary yaw damper k2 with Cz8 = 0 shows much the  same trend as 

60,000 f e e t  (a = 3.60) the  damping of t he  r o l l  mode increases as increases. 
The damping of t h e  Dutch r o l l  mode, as expected, increases with k2 and a t t a i n s  
a sat isfactory value f o r  
sat isfactory as it increases with the  yaw-damper gain. 

a = 5 . 8 O  

r 

k2 

i 

k2>= 0.15. The damping of t h e  s p i r a l  mode remains 

A t  an a l t i t ude  of 7O,OOO f e e t  f o r  which ( f i g .  k(b)) ,  the  
increased a f o r  t r i m  causes the  yaw dnmper t o  have more e f fec t  on the  r o l l  
mode than on the  Dutch r o l l  mode. A s  k2 increases, t he  rate of increase i n  
t h e  damping of t he  r o l l  mode i s  greater  than t h e  rate of increase i n  the  damping 
of t he  Dutch r o l l  mode. I n  fact ,  at approximately a = 80, k2 no longer 
a f fec ts  the  Dutch r o l l  damping. The damping of t h e  r o l l  mode i s  not suff ic ient ,  
however, with any of t h e  values of k2 used i n  t h i s  analysis. The damping of 
t h e  Dutch roll mode becomes sat isfactory f o r  k2 2 0.55. 

and continues t o  increase with k2 a t  almost the  same rate as the  damping of 
t h e  Dutch r o l l  mode. 

The damping of t he  
, s p i r a l  mode obtains an i n i t i a l  increase with the  increase i n  a at k2 = 0 

Effect of yaw and r o l l  dampers.- For the  purpose of determining the  damper 
gains necessary f o r  sa t i s fac tory  damping of t h e  lateral  modes and of b e t t e r  
evaluating t h e  e f f ec t s  of t h e  cross-control moment, values of k l  were selected 
and calculations were m a d e  when 

and C were neglected. Figure 5(a) shows t h e  damping of t h e  moments 

l a t e r a l  modes f o r  h = 60,000 fee t  and a = 3 . 6 O  f o r  two values of k l  (0.35 
and 0.50) and with k2 varying.from 0 t o  0.5. For a value of k l  = 0.35, t he  
r o l l  mode does not a t t a i n  a sat isfactory damping within the  k2 range. The 
damping of t he  Dutch r o l l  mode i s  sat isfactory f o r  k2 = 0, as a resu l t  of t he  
roll-damper effects,and increases with k2. Increasing the  roll-damper gain 
t o  k l  = 0.50 
value a t  k2 2 0.165. 
of an increase i n  k l  and continues t o  increase with k2 so  t h a t  a sat isfac-  
t o ry  value i s  maintained. 
increases but maintains a sat isfactory value as k2 increases. 

k2 w a s  varied and when the  cross-control 

'%a '6r 

causes t h e  damping of t he  r o l l  mode t o  a t t a i n  a sat isfactory 
The damping of t h e  Dutch r o l l  mode increases as a result 

The damping of t h e  s p i r a l  mode decreases as k l  

Because of t h e  decrease i n  the  t o t a l  damping with an increase i n  the  a l t i -  
tude and the  change i n  cer ta in  aerodynamic parameters with angle of attack, t he  
roll-damper gain w a s  increased with an increase i n  the  a l t i t ude  t o  70,000 feet  
and a t r i m  angle of a t tack of 5.8'. 
and with 

With roll-damper gains of 0.70 and 0.90 
k2 varying from 0 t o  1 .0  ( f i g .  5(b)) ,  t he  damping of t he  r o l l  mode 
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increases but does not a t t a i n  a sa t i s fac tory  value within the  k2 range. The 
damping of t he  Dutch r o l l  mode i s  qui te  sa t i s fac tory  f o r  
t he  amount of damping a t t r i bu ted  t o  k l  and the increases with k2 at almost 
t h e  same r a t e  as t h e  r o l l  mode. !Be damping of t h e  s p i r a l  mode decreases w i t h  
increase i n  kl and increases with k2 so t h a t  a sa t i s fac tory  value i s  
maintained. 

k2 = 0 because of 

t 

i 

Effects of Cross-Control Moments 

The possible e f f ec t s  of the cross-control moments which occur when auxil- 
i a r y  dampers are added have been discussed i n  reference 2 and indicate the  
destabi l iz ing e f f ec t s  t h a t  might occur i n  the  Dutch r o l l  and s p i r a l  modes. I n  
view of these effects ,  t h e  cross-control moments C and Czgr were intro-  

duced i n t o  the  analysis t o  determine the  e f f ec t s  they would have on the  stabil- 
i t y .  For the par t icu lar  configuration and f l i g h t  conditions of t h i s  investiga- 
t i on  ( tab le  I), these values were 

%a 

= -0.00464 and C2 = 0.0056. 
6 r  

Aileron cross-cgntrol effects.-  For an a l t i t u d e  of 60,000 f e e t  and an 
angle of a t tack of 3.60, a co6rparison. of f igures  4(a) and 6(a) indicates that 
the  ai leron cross-control moment Cns 

a 
Dutch r o l l  and s p i r a l  modes t o  the  r o l l  mode. 
s p i r a l  modes decreases as kl increases, and t h e  daarping of t he  rol l  mode 
increases as k l  increases. 

causes a t r ans fe r  of damping from the 

The damping of the  Dutch r o l l  and 

A t  an a l t i t u d e  of 70,000 feet and an angle of a t tack of 5.8O, t he  a i leron 
cross-coatrol moment becomes l e s s  effect ive because of the coupling e f f ec t s  of 
t he  r o l l  and Dutch r o l l  modes w i t h  an increase i n  angle of attack. Figure 6(a) 
shows that damping of the  r o l l  mode at  
kl >, 0.8. 

the  Dutch r o l l  damping remains unsatisfactory f o r  t h e  range of kl 
There i s  l i t t l e  o r  no e f f ec t  on the  damping of t he  s p i r a l  mode, which remains 
satisfactory,  decreasing as k l  increases. 

h = 70,000 feet i s  sa t i s fac tory  f o r  
The damping of the  Dutch r o l l  mode, although decreased because of 

undergoes a slight increase as kl increases. However, a t  both a l t i t udes  

considered. 

Rudder cross-control effects.-  A comparison of f igures  4(b) and 6(b) shows 
that the  rudder cross-control moment C z  causes a comparatively s l i gh t  

tendency t o  red is t r ibu te  the damping t o  the  Dutch r o l l  and s p i r a l  modes as 
increases. Because of t he  coupling e f f ec t s  of t h e  r o l l  and Dutch r o l l  modes 
w i t h  an increase i n  angle of attack, a t  an a l t i t u d e  of and 
a = 5 . 8 O  
same ra t e  with an increase i n  Cz8, 
i s  very small compared with the var ia t ion due t o  

k2 l a rger  than kl a r e  indicated t o  o f f se t  the  e f f ec t s  of C . 

B r  
k2 

h = 70,000 feet 

The var ia t ion i n  the  damping due t o  
the  damping of t h e  r o l l  and Dutch r o l l  modes increases at almost t he  

k2. 
Cn6a; therefore, values of 

%a 
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Rudaer and ai leron cross-control effects.-  For the  purpose of evaluating 
the  selected roll-damper gains f o r  sat isfactory damping of t h e  lateral  modes, 
t h e  cross-control moments w e r e  included i n  the  calculations and the  yaw-damper 
gain w a s  varied from 0 t o  1.0. For an a l t i tude  of 60,000 feet with a ro l l -  
damper gain of ( f ig .  7(a)), the  damping of t he  roll mode i s  satis- 
factory f o r  k2 = 0, because of t he  influence of Cns and increases with k2. a' 
The damping of t he  Dutch r o l l  mode decreases because of 

with k2, and it a t t a ins  a sa t i s fac tory  value f o r  k2>= 0.25. If the  damper 
gain i s  increased t o  
tory  and increases with k2. The damping of t he  Dutch r o l l  and s p i r a l  modes 
decreases with an increase i n  k l  but increases with k2, and the  Dutch r o l l  
mode a t t a ins  sat isfactory damping f o r  

kl = 0.35 

but does increase 
nga 

C 

k l  = 0.50, t he  damping of t h e  r o l l  mode remains sat isfac-  

k2 > 0.30. 

For an a l t i t ude  of 70,000 f e e t  ( f ig .  7( b ) ) and a roll-dmper gain of 
kl = 0.70, the  damping of t he  r o l l  mode a t t a ins  a sa t i s fac tory  value f o r  

k2 2 0.435. k2 2 0.30. 
When t h e  damper gain i s  increased t o  
i s  sat isfactory throughout t he  k2 range. The damping of t he  Dutch r o l l  mode, 
because of t he  coupling effects ,  now shows a moderate increase because of 
and a t t a ins  a sat isfactory value f o r  k2 2 0.26 with k l  = 0.9. It should be 
noted t h a t  the  rates of increase of t he  damping of both the  roll and Dutch roll 
modes are almost equal. 

The damping of t he  Dutch roll mode i s  sat isfactory f o r  
k l  = 0.90, t he  damping of t h e  r o l l  mode 

k l  

Effects of A n g l e  of Attack on Augmented Configuration 

Some of the  differences t h a t  occur at the d i f fe ren t  a l t i t udes  are related 
t o  the  change i n  the  angle of attack and can be seen i n  a p lo t  of t he  damping 
of t he  l a t e r a l  modes f o r  t he  augmented configuration (i.e., t he  configuration 
with both roll and yaw dampers) as a function of 
k l  = 0.35 and k2 = 0.50 and with cross-control derivatives included ( f i g .  8), 
t h e  damping of .the r o l l  mode, having sat isfactory damping a t  a = Oo, decreases 
as a increases. The damping of t he  Dutch r o l l  mode and s p i r a l  modes i s  a l so  
sa t i s fac tory  a t  a = 0' and increases with a. 

a. For damper gains of 

If t h e  yaw-damper gain i s  increased so t h a t  k2 = 0.70, the  damping of t he  
a = 4O, then r o l l  mode i s  i n i t i a l l y  t h e  same at  

because of t he  coupling e f f ec t s  of the  Dutch r o l l  mode increases as a 
increases. 
a = 0' but begins t o  decrease a t  approximately a = 4'. A t  a > go damping 
i s  l e s s  than the  damping f o r  the  condition when 
This condition a t  
The damping of t he  s p i r a l  mode undergoes an i n i t i a l  increase and continues t o  
increase with a. When the  roll-damper gain i s  increased so t h a t  kl = 0.50 
and k2 = 0.50, t he  damping of the  r o l l  mode increases a t  a = Oo but decreases 

a = Oo, decreases u n t i l  

The damping of t h e  Dutch r o l l  mode undergoes an i n i t i a l  increase a t  

k l  = 0.35 and Q = 0.50. 
a > go i s  a l so  due t o  the  coupling of t he  Dutch r o l l  mode. 



- - -  I 

rapidly as a increases. The damping of the  Dutch r o l l  knd s p i r a l  modes 
decreases s l i gh t ly  a t  a = 0' but increases rapidly as a increases because 
of the coupling of t he  r o l l  modes. 

Later&-Directional Osci l la t ion 

The Dutch r o l l  c r i t e r ion  of reference 4 i s  expressed i n  terms of damping 

, whereas it i s  suggested i n  reference 5 t h a t  14 required as a function of 

large values of a re  intolerable,  regardless of t he  damping. These c r i -  

t e r i a  are inconsistent f o r  high-alt i tude conditions, and f o r  t he  purpose of t h i s  

analysis both c r i t e r i a  are  considered, inasmuch as  it i s  recognized t h a t  

i n  the s t a b i l i t y  axis system approximately equals i n  the  body axis system. 

"he boundaries f o r  t h e  sa t i s fac tory  f ly ing  qua l i t i e s  of reference 4 a re  indi-  

1: I 
. The rol l - to-s idesl ip  r a t i o s  1 cated i n  a plot  of - as a function of 

c1/2 
a re  l i s t e d  f o r  comparison with the  acceptable c r i t e r ion  of reference 3 which 

requires t h a t  

(kl = k2 = 0)  and the  configuration with the  damper combinations which have been 

accepted as having sa t i s fac tory  damping are  i n  a region which provides to le rab le  
o r  sa t i s fac tory  Dutch r o l l  osc i l la t ion  f o r  dampers inoperative and f o r  dampers 
operating at 60,000 f e e t  and 70,000 f e e t .  
"tolerable" i s  considered sa t i s fac tory  f o r  operation without dampers.) I$ I as tabulated f o r  these conditions a r e  considered unsatisfactory, however, 

since they do not meet t he  c r i t e r ion  t h a t  

combinations which would tend t o  reduce the  values of I f I would be considered 

ra ther  large, t h e  approximate expression of t h i s  r a t i o  as presented i n  refer-  
ence 6 w a s  examined and an increase i n  C w a s  considered. When (CnP), i s  
increased t o  0.25 t o  give CnB = 0.1722 at h = 60,000 f e e t  and C = 0.1247 
a t  h = 7O,OOO f e e t  ( f i g .  lo), the  basic  configuration and the  damper combina- 
t ions  s t i l l  maintain sa t i s fac tory  la te ra l -d i rec t iona l  osc i l la t ions  at both alti- 

tudes and have acceptable rol l - to-s idesl ip  r a t i o s  

< 4. A s  shown i n  figure 9, t he  basic configuration 

(Note t h a t  the  region labeled 
The 

I I < 4. Since the  various damper 

nP 

R o l l  Coupling of the  Undamped Configuration 

For configurations with highly swept w i n g s  and low s t a t i c  s t ab i l i t y ,  i n e r t i a l  
coupling i s  often a problem, and hence a preliminary analysis of t he  ro l l -  
coupling charac te r i s t ics  of t h i s  configuration w a s  undertaken. C r i t i c a l  ro l l ing  

12  



veloci t ies ,  as presented i n  reference 7, were calculated f o r  three center-of- 
gravi ty  posit ions (-6, 0, and 6 f ee t  with respect t o  the  wing-pivot location) 
and f o r  a l t i t udes  of 60,000 and 7O,OOO feet and are presented i n  f igures  11 
and 12. The e f f ec t  of t h i s  change w a s  t o  change the  values of and Cnpy 
as shown i n  the  appendix. For these calculations, the  longitudfnal and l a t e r a l  
modes of o sc i l l a t ion  were a r b i t r a r i l y  assumed t o  have zero damping. 

I 

t For a center-of-gravity location of x = 0 a t  an a l t i t ude  of 60,000 f e e t  cg 
( f ig .  11) the  roll-coupling charac te r i s t ics  a re  considered unsatisfactory i n  
t h e  range 1.68 < p C 2.97 where q2 C 0.8 
center-of-gravity posi t ion aft  of t he  wing-pivot point t o  

decreases the  upper boundary of t he  sa t i s fac tory  range, with r o l l  ra tes  being 
unsatisfactory f o r  1.43 < p C 2.21. 
t he  wing-pivot point t o  xcg = -6 f e e t  
sa t i s fac tory  range, with r o l l  r a t e s  being unsatisfactory f o r  

t and %2 > 0.9. Locating the  

xcg = 6 fee t  

Locating the  center of gravity forward of 
increases the  upper boundary of the  

1.89 < p < 3.41. 

When the  a l t i t u d e  i s  increased t o  70,000 feet ( f i g .  12), t h e  upper bound- 
a r i e s  of r o l l  r a t e s  f o r  sa t i s fac tory  roll-coupling charac te r i s t ics  are grea t ly  
reduced. 

factory i n  the range When 

the  center-of-gravity posi t ion i s  located forward of t h e  wing-pivot point t o  
xcg = -6 feet ,  t he  r o l l  rates are  unsatisfactory f o r  

For a center-of-gravity locat ion of xcg = 0, r o l l  r a t e s  are unsatis-  

0.95 C p < 2.26 where v2 C 0.8 and %2 > 0.9. 

1.17 C p C 2.69. 

It is  evident t h a t  the roll-coupling charac te r i s t ics  are not the  best  t o  
be desired i n  t h i s  configuration f o r  t he  center-of-gravity locations presented. 
If consideration i s  given t o  an increase i n  the  s t a t i c  d i rec t iona l  der ivat ive 

as a means of obtaining more favorable values of I gl, t h i s  increase could a l so  

be a contributing f ac to r  i n  obtaining b e t t e r  roll-coupling character is t ics .  If 
an increase i n  the  s t a t i c  d i rec t iona l  derivative, such as t h a t  i n  the  sect ion 
en t i t l ed  "Lateral-Directional Oscillation, 'I i s  considered (CnP = 0.1722 

a l t i t u d e  of 60,000 fee t ) ,  the  c r i t i c a l  ro l l ing  ve loc i t ies  a re  s ign i f icant ly  
increased and t h e  unstable r o l l  range is  decreased. 
locat ion of 

i s t i c s  a re  unsatisfactory f o r  
posi t ion is  located forward of the  wing-pivot point t o  
rates are unsatisfactory f o r  
and f o r  

1.48 < p C 2.26 and i n  the  range 
1.63 c p < 2.68 f o r  a center-of-gravity locat ion of xcg = -6 f ee t .  It 
should be recognized t h a t  t h i s  analysis of the  roll-coupling charac te r i s t ics  i s  
a l imited one. More detai led analysis should include the  e f f ec t  of damping on 
t h e  c r i t i c a l  veloci ty  and should determine t h e  t rans ien t  motions t o  be encoun- 
te red  i n  ro l l i ng  maneuvers. 

at an 

For a center-of-gravity 
xcg = 0, the  r o l l  rates f o r  sa t i s fac tory  roll-coupling character- 

2.2l C p C 2.87. When the  center-of-gravity 
xcg = -6 feet, t he  r o l l  

2.38 C p < 3.41. For an a l t i t ude  of 70,000 f e e t  
= 0.1247, r o l l  r a t e s  are unsatisfactory i n  the  range CnP 

f o r  a center-of-gravity location of xcg = 0 



CONCLUDING RESIARKS 

An investigation w a s  made of the  charac te r i s t ic  modes of t he  l a t e r a l  
s t a b i l i t y  f o r  a variable-sweep-wing supersonic-transport configuration, cruising 
at a Mach number of 3 at a l t i t udes  of 60,000 and 7O,OOO f e e t  with t r i m  angles 
of a t tack of 3 . 6 O  and 5 . 8 O ,  respectively. Calculations were based on the con- 
f igurat ion at a gross weight of 375,000 pounds w i t h  a wing sweep angle of 75'. Y 

Results show t h a t  augmentati.on by roll and yaw dampers i s  necessary f o r  
sa t i s fac tory  lateral s t a b i l i t y .  With an increase i n  the al t i tude,  the t o t a l  
aerodynamic damping of t he  system decreases and large increments i n  the  damper 
gains a re  required. A t  t he  higher angle of a t tack required f o r  f l i g h t  at an 
a l t i t u d e  of 7O,OOO fee t ,  coupling ex i s t s  between the  r o l l  and Dutch r o l l  modes 
t o  the  extent t h a t  both r o l l  damping and yaw damping have nearly equal influence 
on the  roll and Dutch r o l l  modes. Results a l so  show t h a t  s m a l l  values of the 
s ta t ic -d i rec t iona l  der ivat ive causes unsatisfactory la te ra l -d i rec t iona l  osc i l la -  
t i ons  and contributes t o  roll-coupling problems. An increase i n  the s t a t i c -  
d i rec t iona l  der ivat ive could improve these conditions. 

$ 

Langley Research Center, 
National Aeronautics and Space Administration, 

Langley Station, Hampton, Va., June 22, 1964. 
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APPENDIX 

STABILITY DERIVATIVES AFFECTED BY ANGLE OF ATTACK 

AJXD CENTER-OF-GRAVITY POSITION 

The s t a b i l i t y  derivatives affected by angle of attack are: 

and 

Those derivatives affected by 

Cnp = 

and 

the center-of-gravity posi t ion are: 

X 

cg X 
Gma = CmcLCL, + CL, 7 

C 

The following values a r e  used t o  solve the preceding equations: 

(Czp) = -0.063 (Cnp>, = 0.023 

( c 4 u  = -Oo108 

0 

(cZp) = - 0 ~ 2 9 5  
U 

(cnp) = -0.177 Cr, = 1.550 
0 

C = -0.233 
q L  

(cnp) = -1.238 
a 

Cyp = -0.028 
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TABU 1.- CONFIGURATION CHARACTERISTICS AND FLCGHT CONDITIONS 

USED FOR FLYING-QUALITIES EVALUATION 

b , f t .  . . . . e .  . . . - 
C , f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Ix, (slugs) ( sq  f t )  . . . . . . . . . . . . . . . . . . . . . . . . .  
Iy, (slugs) ( sq  f t )  . . . . . . . . . . . . . . . . . . . . . . . . .  
Iz, (slugs) ( sq  f t )  . . . . . . . . . . . . . . . . . . . . . . . . .  

i 

i 

my slugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
s, s q f t  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
V, f t / s e c . .  . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C k  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
czP 
czr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2b 
'6r 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  C 

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
C"CL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

Cn, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
cnsr . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
cyp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
cy8, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
q, l b / s q f t . .  953 
a, deg 3.6 
p, siug/cu f t  . . . . . . . . . . . . . . . . . . . .  0.900223 
cZp . . . . . . . . . . . . . . . . . . . . . . . .  -0.0815 

h, f t . .  . . . . . . . . . . . . . . . . . . . . . .  60,000 . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . . . . . . . . . . .  0 9992 
cnp . . . . . . . . . . . . . . . . . . . . . . . .  0 . 0 1 6 ~  

77 
63 

1,484, ooo 
11,784,000 
13,112, ooo 

11,650 
4,040 
2,920 
1-55 

0.1018 
-0.124 

-0 0055 

0.0056 

-1.045 

-0.233 

-0.453 
-0.00464 

-0.028 

-0.347 . 

-0.028 
70, ooo 

590 
5 -8  

0.000138 
-0.0929 

0.0517 
0.0121 



(a) Drawings of configuration. 

Figure 1.- Profile and plan views of variable-sweep-wing supersonic-transport configuration used in 
this investigation. 
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(b) Photographs of configuration. 

Figure 1.- Concluded. 
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CzP and Cn P' Figure 2.- Effect of angle of attack on s t ab i l i t y  derivatives 
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Figure 3 . -  Effect of angle of attack on period and damping of lateral modes. 

21 



I .4 

1.2 

I .o 

0 

3 .8 
L 
aJ 
Q 

c -1: .6 

.4 

.2 

(a) Effects of roll-damper gains. 

Figure 4.- Damping of l a t e r a l  modes for  no cross-control moments. 
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--__--- Dutch roll 
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0 60,000 
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70,000 f t  

k p ,  sec 

(b) Effects of yaw-damper gains. 

Figure 4.- Concluded. 
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(a )  Effects of yaw-damper gain at h = 60,000 f ee t  and a t  a = 3.6'. 

Figure 5.- Damping of l a t e r a l  modes with no cross-control moments f o r  given values of roll-damper 
gains. 

24 



'-1- 
Rol I 
Dutch roll 
Spiral 

Criterion 
A m  Roll 
C7-rrrrrr Dutch roll 

--- - -_ - 
--- 

4 
0 0.70 

0.90 

( b )  Effects of yaw-damper gains at h = 70,000 fee t  and at a = 5.8'. 

Figure 5.- Concluded. 



(a) Effects of roll-damper gains. 

Figure 6.- Damping of l a t e ra l  modes including cross-control effects. 
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(b) Effects of yaw-damper gains. 

Figure 6. - Concluded. 
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(a )  Effects of yaw-damper gains a t  h = 60,000 fee t  and a t  a = 3.6'. 

Figure 7.- Damping of l a t e r a l  modes f o r  r o l l  and yaw dampers including cross-control moments. 
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(b) Effects of yaw-damper gains at h = 70,000 feet and at a = 5.8'. 

Figure 7.- Concluded. 
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Figure 8.- Effects of angle of attack on damping of l a t e r a l  modes at an a l t i tude  of 60,000 fee t  
with roll and yaw dampers. 
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Figure 9.- Lateral-directional oscillation fo r  undamped and damped configurations a t  a l t i tudes of 60,000 and 70,000 feet. 
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Figure 10.- Lateral-directional oscillation for undamped and damped configurations with increase in Cnp at altitudes of 
60,000 and 70,000 feet. 
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Figure ll.- Roll-coupling s t a b i l i t y  boundary for  three center-of-gravity positions of undamped 
configuration a t  an al t i tude of  60,000 f e e t  and a t  an angle of attack of 6O. 
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Figure 12.- Roll-coupling s t a b i l i t y  boundary fo r  three center-of-gravity positions of undamped 
configuration at an d t i t u d e  of 70,000 fee t  and a t  an angle of attack of 5.8'. 
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